Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Clin Infect Dis ; 75(Supplement_1): S110-S120, 2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-1992148

ABSTRACT

BACKGROUND: Comprehensive pathogen genomic surveillance represents a powerful tool to complement and advance precision vaccinology. The emergence of the Alpha variant in December 2020 and the resulting efforts to track the spread of this and other severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern led to an expansion of genomic sequencing activities in Germany. METHODS: At Robert Koch Institute (RKI), the German National Institute of Public Health, we established the Integrated Molecular Surveillance for SARS-CoV-2 (IMS-SC2) network to perform SARS-CoV-2 genomic surveillance at the national scale, SARS-CoV-2-positive samples from laboratories distributed across Germany regularly undergo whole-genome sequencing at RKI. RESULTS: We report analyses of 3623 SARS-CoV-2 genomes collected between December 2020 and December 2021, of which 3282 were randomly sampled. All variants of concern were identified in the sequenced sample set, at ratios equivalent to those in the 100-fold larger German GISAID sequence dataset from the same time period. Phylogenetic analysis confirmed variant assignments. Multiple mutations of concern emerged during the observation period. To model vaccine effectiveness in vitro, we employed authentic-virus neutralization assays, confirming that both the Beta and Zeta variants are capable of immune evasion. The IMS-SC2 sequence dataset facilitated an estimate of the SARS-CoV-2 incidence based on genetic evolution rates. Together with modeled vaccine efficacies, Delta-specific incidence estimation indicated that the German vaccination campaign contributed substantially to a deceleration of the nascent German Delta wave. CONCLUSIONS: SARS-CoV-2 molecular and genomic surveillance may inform public health policies including vaccination strategies and enable a proactive approach to controlling coronavirus disease 2019 spread as the virus evolves.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Genome, Viral , Genomics , Humans , Phylogeny , SARS-CoV-2/genetics , Vaccinology
2.
Euro Surveill ; 27(22)2022 06.
Article in English | MEDLINE | ID: covidwho-1879391

ABSTRACT

German national surveillance data analysis shows that hospitalisation odds associated with Omicron lineage BA.1 or BA.2 infections are up to 80% lower than with Delta infection, primarily in ≥ 35-year-olds. Hospitalised vaccinated Omicron cases' proportions (2.3% for both lineages) seemed lower than those of the unvaccinated (4.4% for both lineages). Independent of vaccination status, the hospitalisation frequency among cases with Delta seemed nearly threefold higher (8.3%) than with Omicron (3.0% for both lineages), suggesting that Omicron inherently causes less severe disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Germany/epidemiology , Humans , SARS-CoV-2/genetics , Severity of Illness Index
3.
Nat Commun ; 13(1): 1152, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1730284

ABSTRACT

In spring 2021, an increasing number of infections was observed caused by the hitherto rarely described SARS-CoV-2 variant A.27 in south-west Germany. From December 2020 to June 2021 this lineage has been detected in 31 countries. Phylogeographic analyses of A.27 sequences obtained from national and international databases reveal a global spread of this lineage through multiple introductions from its inferred origin in Western Africa. Variant A.27 is characterized by a mutational pattern in the spike gene that includes the L18F, L452R and N501Y spike amino acid substitutions found in various variants of concern but lacks the globally dominant D614G. Neutralization assays demonstrate an escape of A.27 from convalescent and vaccine-elicited antibody-mediated immunity. Moreover, the therapeutic monoclonal antibody Bamlanivimab and partially the REGN-COV2 cocktail fail to block infection by A.27. Our data emphasize the need for continued global monitoring of novel lineages because of the independent evolution of new escape mutations.


Subject(s)
COVID-19/immunology , COVID-19/virology , Pandemics , SARS-CoV-2/immunology , Africa, Western/epidemiology , Amino Acid Substitution , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/immunology , Antiviral Agents/pharmacology , COVID-19/transmission , Drug Combinations , Germany/epidemiology , Global Health , Humans , Immune Evasion/genetics , Mutation , Phylogeography , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
4.
Front Public Health ; 9: 708694, 2021.
Article in English | MEDLINE | ID: covidwho-1463523

ABSTRACT

Two COVID-19 outbreaks occurred in residential buildings with overcrowded housing conditions in the city of Göttingen in Germany during May and June 2020, when COVID-19 infection incidences were low across the rest of the country, with a national incidence of 2.6/100,000 population. The outbreaks increased the local incidence in the city of Göttingen to 123.5/100,000 in June 2020. Many of the affected residents were living in precarious conditions and experienced language barriers. The outbreaks were characterized by high case numbers and attack rates among the residents, many asymptomatic cases, a comparatively young population, and substantial outbreak control measures implemented by local authorities. We analyzed national and local surveillance data, calculated age-, and gender-specific attack rates and performed whole genome sequencing analysis to describe the outbreak and characteristics of the infected population. The authorities' infection control measures included voluntary and compulsory testing of all residents and mass quarantine. Public health measures, such as the general closure of schools and a public space as well as the prohibition of team sports at local level, were also implemented in the district to limit the outbreaks locally. The outbreaks were under control by the end of June 2020. We describe the measures to contain the outbreaks, the challenges experienced and lessons learned. We discuss how public health measures can be planned and implemented through consideration of the needs and vulnerabilities of affected populations. In order to avoid coercive measures, barrier-free communication, with language translation when needed, and consideration of socio-economic circumstances of affected populations are crucial for controlling infectious disease transmission in an outbreak effectively and in a timely way.


Subject(s)
COVID-19 , Disease Outbreaks , Germany/epidemiology , Housing , Humans , SARS-CoV-2
5.
Viruses ; 13(8)2021 07 29.
Article in English | MEDLINE | ID: covidwho-1335229

ABSTRACT

Here, we report on the increasing frequency of the SARS-CoV-2 lineage A.27 in Germany during the first months of 2021. Genomic surveillance identified 710 A.27 genomes in Germany as of 2 May 2021, with a vast majority identified in laboratories from a single German state (Baden-Wuerttemberg, n = 572; 80.5%). Baden-Wuerttemberg is located near the border with France, from where most A.27 sequences were entered into public databases until May 2021. The first appearance of this lineage based on sequencing in a laboratory in Baden-Wuerttemberg can be dated to early January '21. From then on, the relative abundance of A.27 increased until the end of February but has since declined-meanwhile, the abundance of B.1.1.7 increased in the region. The A.27 lineage shows a mutational pattern typical of VOIs/VOCs, including an accumulation of amino acid substitutions in the Spike glycoprotein. Among those, L18F, L452R and N501Y are located in the epitope regions of the N-terminal- (NTD) or receptor binding domain (RBD) and have been suggested to result in immune escape and higher transmissibility. In addition, A.27 does not show the D614G mutation typical for all VOIs/VOCs from the B lineage. Overall, A.27 should continue to be monitored nationally and internationally, even though the observed trend in Germany was initially displaced by B.1.1.7 (Alpha), while now B.1.617.2 (Delta) is on the rise.


Subject(s)
COVID-19/virology , SARS-CoV-2/isolation & purification , Amino Acid Substitution , COVID-19/epidemiology , France/epidemiology , Genome, Viral , Germany/epidemiology , Humans , Mutation , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
6.
Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz ; 64(9): 1050-1057, 2021 Sep.
Article in German | MEDLINE | ID: covidwho-1330362

ABSTRACT

The global spread of the coronavirus SARS-CoV­2 has massively impacted health, economic, and social systems. Although effective vaccines are now available, it is likely that this pathogen will become endemic and stay with us for years. In order to most effectively protect others and oneself from SARS-CoV­2 infection, an understanding of how SARS-CoV­2 is transmitted is of utmost importance.In this review paper, we explain transmission routes with an eye towards protecting others and oneself. We also address characteristics of SARS-CoV­2 transmission in the community. This work will help to clarify the following questions based on the available literature: When and for how long is an infected person contagious? How is the virus excreted? How is the virus taken up? How does the virus spread in society?Human-to-human transmission of SARS-CoV­2 is strongly determined by pathogen molecular characteristics as well as the kinetics of replication, shedding, and infection. SARS-CoV­2 is transmitted primarily via human aerosols, which infected persons can excrete even if symptoms of the disease are not (yet) present. Most infected people cause only a few secondary cases, whereas a few cases (so-called super-spreaders) cause a high number of secondary infections - at the population level one speaks of a so-called "overdispersion." These special characteristics of SARS-CoV­2 (asymptomatic aerosol transmission and overdispersion) make the pandemic difficult to control.


Subject(s)
COVID-19 , COVID-19/prevention & control , COVID-19/transmission , Communicable Disease Control , Germany , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL